Efficient Construction of Structured Argumentation Systems

Bruno YUN1 \quad Nir Oren1 \quad Madalina CROITORU2

September 2020

1. University of Aberdeen
2. University of Montpellier
Let $T = (S, D)$ be a defeasible theory such that $S = \{r_1, r_2, r_3, r_4\}$ and $D = \{r_5, r_6, r_7\}$.

- r_1: “John has a prostate cancer” ($\rightarrow c$);
- r_2: “John is following a treatment for his cancer” ($\rightarrow t$);
- r_3: “John is a male patient” ($\rightarrow m$);
- r_4: “Studies show that there is no correlation between treating prostate cancer and bowel disorders” ($\rightarrow \neg r_7$);
- r_5: “John does not have abdominal pains” ($\Rightarrow a$);
- r_6: “If John does not have abdominal pain then he may not suffer from bowel disorder” ($a \Rightarrow \neg b$);
- r_7: “A patient with prostate cancer that is under treatment may suffer from bowel disorders” ($c, t \Rightarrow b$).
The ASPIC Framework

<table>
<thead>
<tr>
<th>Definition (Argument)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given $T = (S, D)$, an argument A is $A_1, \ldots, A_n \leadsto \psi$, where ${A_1, \ldots A_n}$ is a minimal set of arguments s.t. $\exists r \in S \cup D$, where r is applicable to ${\text{Conc}(A_1), \ldots, \text{Conc}(A_n)}$, $\leadsto = \text{Imp}(r)$ and $\psi = \text{Head}(r)$.</td>
</tr>
<tr>
<td>$\text{Conc}(A) = \psi$ and $\text{Sub}(A) = \text{Sub}(A_1) \cup \cdots \cup \text{Sub}(A_n) \cup {A}$ and $\text{TR}(A) = \text{Conc}(A_1), \ldots, \text{Conc}(A_n) \leadsto \psi$.</td>
</tr>
</tbody>
</table>
The ASPIC Framework

Definition (Argument)

Given $T = (S, D)$, an argument A is $A_1, \ldots, A_n \rightsquigarrow \psi$, where $\{A_1, \ldots, A_n\}$ is a minimal set of arguments s.t. $\exists r \in S \cup D$, where r is applicable to $\{\text{Conc}(A_1), \ldots, \text{Conc}(A_n)\}$, $\rightsquigarrow = \text{Imp}(r)$ and $\psi = \text{Head}(r)$.

$\text{Conc}(A) = \psi$ and $\text{Sub}(A) = \text{Sub}(A_1) \cup \cdots \cup \text{Sub}(A_n) \cup \{A\}$ and $\text{TR}(A) = \text{Conc}(A_1), \ldots, \text{Conc}(A_n) \rightsquigarrow \psi$.

There are 7 arguments.

- $A_1 \Longrightarrow c$
- $A_3 \Longrightarrow m$
- $A_5 \Longrightarrow \neg r_7$
- $A_7 = A_4 \Rightarrow \neg b$
- $A_2 \Longrightarrow t$
- $A_4 \Rightarrow a$
- $A_6 = A_1, A_2 \Rightarrow b$
The ASPIC Framework

Definition (Argument)

Given $T = (S, D)$, an argument A is $A_1, \ldots, A_n \rightsquigarrow \psi$, where \{\!\{A_1, \ldots A_n\}\!\} is a minimal set of arguments s.t. $\exists r \in S \cup D$, where r is applicable to $\{Conc(A_1), \ldots, Conc(A_n)\}$, $\rightsquigarrow = Imp(r)$ and $\psi = Head(r)$.

$Conc(A) = \psi$ and $Sub(A) = Sub(A_1) \cup \cdots \cup Sub(A_n) \cup \{A\}$ and $TR(A) = Conc(A_1), \ldots, Conc(A_n) \rightsquigarrow \psi$.

There are 7 arguments.

$$A_7 = A_4 \Rightarrow \neg b.$$

$$Conc(A_7) = \neg b, \ TR(A_7) = a \Rightarrow \neg b \text{ and } Sub(A_7) = \{A_7, A_4\}.$$
We assume that we have a preference relation \preceq on arguments.

Definition (Defeat)

A defeats B iff $B \preceq A$ and either:

1. **(Rebutting)** there exists $B' \in \text{Sub}(B)$ such that $\text{Conc}(B') = \neg \text{Conc}(A)$ and $\text{Imp}(\text{TR}(B'))$ is \Rightarrow; or
2. **(Undercutting)** $\text{Conc}(A) = \neg \text{Name}(\text{TR}(B))$
We assume that we have a preference relation \preceq on arguments.

Definition (Defeat)

A defeats B iff $B \preceq A$ and either:

- **(Rebutting)** there exists $B' \in \text{Sub}(B)$ such that $\text{Conc}(B') = \neg \text{Conc}(A)$ and $\text{Imp}(\text{TR}(B'))$ is \Rightarrow; or
- **(Undercutting)** $\text{Conc}(A) = \neg \text{Name}(\text{TR}(B))$

- If $A_7 \prec A_6$ then $A_6 = A_1, A_2 \Rightarrow b$ defeats (rebutting) $A_7 = A_4 \Rightarrow \neg b$ but A_7 does not defeat A_6.
The ASPIC Framework

We assume that we have a preference relation \preceq on arguments.

Definition (Defeat)

A defeats B iff $B \preceq A$ and either:

- **(Rebutting)** there exists $B' \in \text{Sub}(B)$ such that $\text{Conc}(B') = \neg \text{Conc}(A)$ and $\text{Imp}(\text{TR}(B'))$ is \Rightarrow; or
- **(Undercutting)** $\text{Conc}(A) = \neg \text{Name}(\text{TR}(B))$

- If $A_7 \prec A_6$ then $A_6 = A_1, A_2 \Rightarrow b$ defeats (rebutting) $A_7 = A_4 \Rightarrow \neg b$ but A_7 does not defeat A_6.
- If $A_6 \preceq A_5$ then $A_6 = A_1, A_2 \Rightarrow b$ is defeated by $A_5 = \rightarrow \neg r_7$ (undercutting)
We assume that we have a preference relation \preceq on arguments.

Definition (Defeat)

A defeats B iff $B \preceq A$ and either:

- (Rebutting) there exists $B' \in \text{Sub}(B)$ such that $\text{Conc}(B') = \neg \text{Conc}(A)$ and $\text{Imp}(\text{TR}(B'))$ is \Rightarrow; or

- (Undercutting) $\text{Conc}(A) = \neg \text{Name}(\text{TR}(B))$

- If $A_7 \prec A_6$ then $A_6 = A_1, A_2 \Rightarrow b$ defeats (rebutting) $A_7 = A_4 \Rightarrow \neg b$ but A_7 does not defeat A_6.

- If $A_6 \preceq A_5$ then $A_6 = A_1, A_2 \Rightarrow b$ is defeated by $A_5 = \rightarrow \neg r_7$ (undercutting)

We get an argumentation system $(\text{AS}) \ A_{\text{AS}_T} = (A, \text{Def})$
The Idea Behind The Paper

We instantiate ASPIC on defeasible theories to reason with conflicting pieces of information.

We make the following observations:

- Most approaches generate the whole argumentation graph
- We have a huge number of arguments!
We instantiate ASPIC on defeasible theories to reason with conflicting pieces of information.

We make the following observations:

- Most approaches generate the whole argumentation graph → Can we generate only a part of the AS?
- We have a huge number of arguments! → How can we reduce the number of arguments?
The Idea Behind The Paper

We instantiate ASPIC on defeasible theories to reason with conflicting pieces of information.

We make the following observations:

- Most approaches generate the whole argumentation graph → Can we generate only a part of the AS?
- We have a huge number of arguments! → How can we reduce the number of arguments?

Contribution of the paper: The study of backward chaining mechanisms in ASPIC instantiations with an empirical evaluation demonstrating the impact of our approach.
Plan

1. Introduction
 - Structured Argumentation with ASPIC
 - Intuition

2. Backward Chaining for Argumentation
 - The Graph of Rule Interaction
 - AS for a literal
 - Defeasible Theory Filtration

3. Evaluation & Conclusion
 - Empirical Evaluation
 - Conclusion
The GRI expresses the interaction between the rules.

Definition (Graph of Rule Interaction)

The GRI of $\mathcal{T} = (S, D)$ is $\text{GRI}_\mathcal{T} = (\mathcal{N}, \mathcal{R}_s, \mathcal{R}_d)$, where:

1. $\mathcal{N} = S \cup D \cup \{\emptyset\}$;
2. $\mathcal{R}_s \subseteq 2^{\mathcal{N}} \times \mathcal{N}$ s.t. $\forall n_1 \in \mathcal{N}$ and $\forall N \subseteq \mathcal{N}$, $(N, n_1) \in \mathcal{R}_s$ iff $|N| = |\text{Body}(n_1)|$ and $\bigcup_{n \in N} \text{Head}(n) = \text{Body}(n_1)$.
3. $\mathcal{R}_d \subseteq \mathcal{N} \times \mathcal{N}$ s.t. $\forall n_1, n_2 \in \mathcal{N}$, $(n_1, n_2) \in \mathcal{R}_d$ iff at least one of the following conditions holds: (1) $\text{Head}(n_1) = \neg \text{Head}(n_2)$ and $\text{Imp}(n_2) \Rightarrow$ or (2) $\text{Head}(n_1) = \neg \text{Name}(n_2)$.

Note that $\text{Head}(\emptyset) = \text{Body}(\emptyset) = \text{Name}(\emptyset) = \emptyset$.
The Graph of Rule Interaction

Figure – The corresponding graph of rule interaction
The sequence \((\{\emptyset\}, \{\{r_1, r_2\}\}, \{\{r_7\}\}) \) is a support path to \(r_7 \).

Figure – A support path in the GRI
Characterising Rules

Definition (Activated rule)

A rule is activated iff there exists a support path to \(r \) in \(GRI_T \).

Definition (Connected rule)

\(n \) is connected to \(n' \) iff there exists \((n_1, \ldots, n_k)\) such that:

- for every \(1 \leq i \leq k \), \(n_i \in \mathcal{N} \) and \(n_i \) is activated
- for every \(1 \leq i \leq k - 1 \), it holds that either \((n_i, n_{i+1}) \in \mathcal{R}_d\) or there exists \(N \subseteq 2^\mathcal{N} \) s.t. \((N, n_{i+1}) \in \mathcal{R}_s\) with \(n_i \in N \).

Definition (Potentially necessary rule)

A rule \(r \) is potentially necessary for \(l \) iff \(\exists r' \in S \cup D \) s.t. \(\text{Head}(r') = l \) and \(r \) is connected to \(r' \).
Characterising Rules

r_3 is not potentially necessary for b whereas r_1, \ldots, r_6 are.

Figure – Potentially necessary rules for b
Definition (AS for a literal)

\(\text{AS}_T^l = (A', \text{Def}') \) is the AS for \(l \) (w.r.t. \(\text{AS}_T = (A, \text{Def}) \)) iff \(A' \) is minimal (w.r.t. \(\subseteq \)) s.t. all the following are satisfied:

- \(A' \subseteq A \) and \(\{ a \in A \mid \text{Conc}(a) = l \} \subseteq A' \)
- If \(A \in A' \) and \(B \in A \) s.t. \((B, A) \in \text{Def} \) then \(B \in A' \)
- If \(A \in A' \) then \(\text{Sub}(A) \subseteq A' \)
- \(\text{Def}' = \{(A, B) \in \text{Def} \mid A, B \in A'\} \).

\(A_1 \rightarrow c \)	\(A_2 \rightarrow t \)
\(A_3 \rightarrow m \)	\(A_4 \implies a \)
\(A_5 \rightarrow \neg r_7 \)	\(A_6 = A_1, A_2 \Rightarrow b \)
\(A_7 = A_4 \Rightarrow \neg b \)	

Table – Arguments in the AS for \(b \)
The AS for \(l \) is useful to draw conclusions on \(l \)

Conclusions on other literals have to be taken carefully.

Links between the GRI and ASs:
- Sufficient condition to have less arguments in the AS for \(l \)
- Removing not activated rules will not change \(\text{AS}_T \)
- Removing not potentially necessary rules for \(l \) will not change the AS for \(l \) (\(\text{AS}_T^l \))
Defeasible Theory Filtration

We propose a framework inspired from the work of Yun et al.\(^3\) :

1. Compute the GRI of \(T\)
2. Compute and remove rules that are not potentially necessary for the literal.
3. Instantiate the AS for \(l\).

Please note that:

- The GRI only has to be computed once, stored in memory and reused for multiple queries.
- It can potentially reduce the time taken to answer a query.

Plan

1 Introduction
 - Structured Argumentation with ASPIC
 - Intuition

2 Backward Chaining for Argumentation
 - The Graph of Rule Interaction
 - AS for a literal
 - Defeasible Theory Filtration

3 Evaluation & Conclusion
 - Empirical Evaluation
 - Conclusion
Comparing BC and FC

<table>
<thead>
<tr>
<th>Theory</th>
<th>Forward</th>
<th>Backward</th>
<th>Filter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mean time (s)</td>
<td># args.</td>
<td># defeats</td>
</tr>
<tr>
<td>tree(n,k)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 8, k = 3</td>
<td>5712.7</td>
<td>59049</td>
<td>0</td>
</tr>
<tr>
<td>n = 9, k = 3</td>
<td>Timeout</td>
<td>196830</td>
<td>0</td>
</tr>
<tr>
<td>level(n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 10</td>
<td>0.1</td>
<td>19</td>
<td>26</td>
</tr>
<tr>
<td>n = 1000</td>
<td>6.7</td>
<td>1999</td>
<td>2996</td>
</tr>
<tr>
<td>n = 5000</td>
<td>181.7</td>
<td>9999</td>
<td>14996</td>
</tr>
<tr>
<td>n = 10000</td>
<td>678.9</td>
<td>19999</td>
<td>29996</td>
</tr>
<tr>
<td>levels(n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 10</td>
<td>0.1</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td>n = 1000</td>
<td>6.7</td>
<td>1999</td>
<td>1998</td>
</tr>
<tr>
<td>n = 5000</td>
<td>155.9</td>
<td>9999</td>
<td>9998</td>
</tr>
<tr>
<td>n = 10000</td>
<td>696.8</td>
<td>19999</td>
<td>19998</td>
</tr>
<tr>
<td>teams(n)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>n = 3</td>
<td>0.4</td>
<td>176</td>
<td>272</td>
</tr>
<tr>
<td>n = 4</td>
<td>1.6</td>
<td>736</td>
<td>1568</td>
</tr>
<tr>
<td>n = 5</td>
<td>26.8</td>
<td>3008</td>
<td>8256</td>
</tr>
<tr>
<td>n = 6</td>
<td>539.7</td>
<td>12160</td>
<td>254335</td>
</tr>
<tr>
<td>n = 7</td>
<td>11613.2</td>
<td>48896</td>
<td>1401159</td>
</tr>
</tbody>
</table>

Table – Summary of the empirical evaluation
We provide a workflow for efficiently constructing structured AS using ASPIC on propositional logic:

- We introduce the Graph of Rule Interaction to study the behaviour of defeasible rules.
- We give theoretical properties for ASs for literals.
- We introduce a framework for filtering DTs.
- We empirically compare our new approaches and show promising results.
The Defeasible Theories

We consider the following DT from Maher et al.⁴:

- In \text{tree}(n,k), the rules form a \(k\)-branching tree of depth \(n\) where every literal occurs only once.
- In \text{level}(n), there is a cascade of \(n\) disputed conclusions, i.e. there are rules \(\Rightarrow p_i\) and \(p_{i+1} \Rightarrow \neg p_i\), for \(0 \leq i \leq n\).
- In \text{levels}(n), for odd \(i\), the latter rule has a superior strength when compared to even rules.
- In \text{teams}(n), every literal is disputed with two rules for \(p_i\) and two rules for \(\neg p_i\), and the rules for \(p_i\) are superior to the rules for \(\neg p_i\).
