

centre for data science and systems complexity

A Discussion Game for the Grounded Semantics of Abstract Dialectical Frameworks

A.Keshavarzi Zafarghandi, R.Verbrugge, B.Verheij

Department of Artificial Intelligence, Bernoulli Institute University of Groningen, The Netherlands

8th International Conference on Computational Models of Argument, COMMA 2020

Perugia, September, 2020

(日) (문) (문) (문)

Introduction

Dialectical methods and ADFs

Dialectical method

イロト イボト イヨト イヨト

- B

Introduction

Dialectical methods and ADFs

Dialectical method

- Semantics of AFs are expressed by structural discussion [Vreeswijk and Prakken, 2000, Caminada, 2018]
- Methods used to interpret semantics of AFs cannot be reused in ADFs

Question

Are semantics of ADFs expressible in terms of structural discussion (discussion games)?

The first existing game for ADFs [Keshavarzi Zafarghandi et al., 2019] characterizes the preferred semantics.

A.Keshavarzi, R.Verbrugge, B.Verheij (UG)

ADFs and discussion games

Main Contributions

- Defining a discussion game for grounded semantics of ADFs
 Grounded Discussion Game
- Studying the soundness and completeness of the method
 - a claim of a defender has a winning strategy iff the grounded interpretation contains the claim

A B M A B M

Definition

An abstract dialectical framework (ADF) is a tuple F = (A, L, C) where

- A is a finite set of nodes (arguments, statements)
- $L \subseteq A \times A$ is a set of links
- C = {φ_a}_{a∈A} is a collection of propositional formulas (acceptance conditions)

Information ordering

Given an ADF F = (A, L, C).

- A three-valued interpretation: $v : A \rightarrow \{\mathbf{t}, \mathbf{f}, \mathbf{u}\}.$
- \leq_i : $\mathbf{u} \leq_i \mathbf{t}$ and $\mathbf{u} \leq_i \mathbf{f}$.

•
$$v_i \leq_i v_j$$
 iff $\forall a \in A : v_i(a) \leq_i v_j(a)$.

Characteristic Operator

$$\Gamma_F(v) = v' \text{ s.t. } v'(a) = \begin{cases} \mathbf{t} & \text{if } \varphi_a^v \text{ is irrefutable (i.e., a tautology)}, \\ \mathbf{f} & \text{if } \varphi_a^v \text{ is unsatisfiable,} \\ \mathbf{u} & \text{otherwise.} \end{cases}$$

 $\varphi_a^v = \varphi_a[p/\top : v(p) = \mathbf{t}][p/\bot : v(p) = \mathbf{f}]$

イロト イポト イヨト イヨト 三日

Semantics of ADFs

Given an ADF F. An interpretation v is

- $v \in adm(F)$ if $v \leq_i \Gamma_F(v)$
- v is grd(F) if v is the \leq_i -least fixed point of $\Gamma_F(v)$

Acceptance and denial of arguments

Given an ADF F and an interpretation v

- $a \in A$ is acceptable w.r.t. v: φ_a^v is irrefutable
- $a \in A$ is deniable w.r.t. v: φ_a^v is unsatisfiable

Decision problem

Given F an ADF, $a \in A$ and $\sigma \in \{adm, pref, comp, mod, ... \}$.

 a is credulously acceptable (respectively, deniable) under σ: if there exists a σ-interpretation that accepts (denies) a

A.Keshavarzi, R.Verbrugge, B.Verheij (UG)

ADFs and discussion games

Example

 $F = (\{a, b, c, d, e, f\}, \{\varphi_a : \bot, \varphi_b : \neg a \lor \neg e, \varphi_c : b \land f, \varphi_d : e \land \neg c, \varphi_e : \neg f, \varphi_f : \top\})$

• $grd(F) = \{ \{a \mapsto \mathbf{f}, b \mapsto \mathbf{t}, c \mapsto \mathbf{t}, d \mapsto \mathbf{f}, e \mapsto \mathbf{f}, f \mapsto \mathbf{t} \} \} = \{ \mathsf{fttfft} \}$

イロト 不得 トイヨト イヨト 二日

Example

$$F = (\{a, b\}, \{\varphi_a : b, \varphi_b : \neg b \lor b\})$$

v is grd(F) if v is the ≤_i-least fixed point of Γ_F(v)
grd(F) = {{a ↦ t, b ↦ t}} = {tt}

イロト 不得 トイヨト イヨト 三日

Example

$$F = (\{a, b\}, \{\varphi_a : b, \varphi_b : \neg b \lor b\})$$

v is grd(F) if v is the ≤_i-least fixed point of Γ_F(v)
grd(F) = {{a → t, b → t}} = {tt}

Theorem 4.2.13 of [Polberg, 2017]

Any ADF F has an equivalent ADF F' without any redundant link.
F' = ({a, b}, {φ_a : b, φ_b : ⊤})

• = • • =

Structure of the game

- Two-player game: proponent, opponent
- Perfect information
- Socrates form of reasoning:
 - Proponent (P) presents a claim
 - Opponent (O) challenges the consequences of the claim
- P loses the game iff P cannot defeat challenges of O

The main goal

Answering credulous (skeptical) decision problem of an ADF under grounded semantics *without* constructing the full grounded interpretation

< ロ > < 同 > < 三 > < 三 >

• P claims: *d* is deniable, $g_0 = v_u$

A.Keshavarzi, R.Verbrugge, B.Verheij (UG)

ADFs and discussion games

э

<ロト < 同ト < ヨト < ヨト

Example

- P claims: d is deniable, $g_0 = v_u$
- O challenges: Is d an initial argument?

- 4 同 1 4 三 1 4 三 1

Example

- P claims: *d* is deniable, $g_0 = v_u$
- O challenges: Is d an initial argument?
- P answers: No. $g_1 = g_0$

э

< ロ > < 同 > < 三 > < 三 >

Example

- P claims: d is deniable, $g_0 = v_u$
- O challenges: Is d an initial argument?
- P answers: No. $g_1 = g_0$
- O challenges: Is any of the ancestors of d an initial argument

▲ 同 ▶ ▲ 国 ▶ ▲ 国

Example

- P claims: d is deniable, $g_0 = v_u$
- O challenges: Is d an initial argument?
- P answers: No. $g_1 = g_0$
- O challenges: Is any of the ancestors of d an initial argument
- P answers: $g_2 = g_1|_{\mathbf{t}}^f = \mathbf{uuuuut}$, $Ancestors(d, g_1) = \{d, e, c, f\}$

< ロ > < 同 > < 三 > < 三 >

- P answers: $g_2 = g_1|_{\mathbf{t}}^f = \mathbf{uuuuut}$, $Ancestors(d, g_1) = \{d, e, c, f\}$
- O checks $g_1 <_i g_2$ and asks: extend g_2

- P answers: $g_2 = g_1|_{\mathbf{t}}^f = \mathbf{uuuuut}$, $Ancestors(d, g_1) = \{d, e, c, f\}$
- O checks $g_1 <_i g_2$ and asks: extend g_2
- P evaluates $\varphi_c^{g_2} \equiv b \land \top \equiv b$, $\varphi_e^{g_2} \equiv \bot$: $g_3 = g_2|_{\mathbf{f}}^e = \mathbf{uuuuft}$

- P answers: $g_2 = g_1|_{\mathbf{t}}^f = \mathbf{uuuuut}$, $Ancestors(d, g_1) = \{d, e, c, f\}$
- O checks $g_1 <_i g_2$ and asks: extend g_2
- P evaluates $\varphi_c^{g_2} \equiv b \land \top \equiv b$, $\varphi_e^{g_2} \equiv \bot$: $g_3 = g_2|_{\mathbf{f}}^e = \mathbf{uuuuft}$
- O checks $g_2 <_i g_3$ and asks P to extend g_3

- P answers: $g_2 = g_1|_{\mathbf{t}}^f = \mathbf{uuuuut}$, $Ancestors(d, g_1) = \{d, e, c, f\}$
- O checks $g_1 <_i g_2$ and asks: extend g_2
- P evaluates $\varphi_c^{g_2} \equiv b \land \top \equiv b$, $\varphi_e^{g_2} \equiv \bot$: $g_3 = g_2|_{\mathbf{f}}^e = \mathbf{uuuuft}$
- O checks $g_2 <_i g_3$ and asks P to extend g_3

• P evaluates
$$\varphi_d^{g_3} \equiv \bot$$
: $g_4 = uuufft$

- P answers: $g_2 = g_1|_{\mathbf{t}}^f = \mathbf{uuuuut}$, $Ancestors(d, g_1) = \{d, e, c, f\}$
- O checks $g_1 <_i g_2$ and asks: extend g_2
- P evaluates $\varphi_c^{g_2} \equiv b \land \top \equiv b$, $\varphi_e^{g_2} \equiv \bot$: $g_3 = g_2|_{\mathbf{f}}^e = \mathsf{uuuuft}$
- O checks $g_2 <_i g_3$ and asks P to extend g_3
- P evaluates $\varphi_d^{g_3} \equiv \bot$: $g_4 = uuufft$
- O checks $g_3 <_i g_4$: $d \mapsto \mathbf{f} \in g_4$

- P answers: $g_2 = g_1|_{\mathbf{t}}^f = \mathbf{uuuuut}$, $Ancestors(d, g_1) = \{d, e, c, f\}$
- O checks $g_1 <_i g_2$ and asks: extend g_2
- P evaluates $\varphi_c^{g_2} \equiv b \land \top \equiv b$, $\varphi_e^{g_2} \equiv \bot$: $g_3 = g_2|_{\mathbf{f}}^e = \mathbf{uuuuft}$
- O checks $g_2 <_i g_3$ and asks P to extend g_3
- P evaluates $\varphi_d^{g_3} \equiv \bot$: $g_4 = uuufft$
- O checks $g_3 <_i g_4$: $d \mapsto \mathbf{f} \in g_4$
- The game stops: P wins

• IniClaim(a, x)

- CheckIni(a) : $A \rightarrow \mathcal{V} (g_1 = g_0|_{\mathbf{t}/\mathbf{f}}^a / g_1 = g_0)$
- $Check(g_{i-1}, g_i)$
 - ▶ If $g_{i-1} <_i g_i$ and g_i contains the initial claim: stop
 - ▶ If $g_{i-1} <_i g_i$: extend g_i (i.e. $Extend(g_i)$)
 - If $g_{i-1} \sim_i g_i$,
 - if $g_i = CheckIni(a)$ or $g_i = Eval(g_{i-1})$: O applies $IniAnc(a, g_{i-1})$, if $g_i = NewIniAnc(a, g_{i-1})$: stop.
- IniAnc(a,g)
- $\mathit{NewIniAnc}(a,g): A imes \mathcal{V} o \mathcal{V} \ (g|^b_{arphi^g_b} \ \text{s.t} \ b \in \mathit{NewAnc}(a,g))$
- Ancestors(a, g) : $A \times V \rightarrow 2^A$
- Extend(g)

•
$$Eval(g): \mathcal{V} \rightarrow \mathcal{V} \ (g_{i+1} = g_i|_{\varphi_b^{g_i}}^b)$$

Definition

Let F = (A, R, C) be an ADF. A grounded discussion game for credulous acceptance (denial) of $a \in A$ is a sequence $[g_0, \ldots, g_n]$:

- $g_0 = v_u;$
- $g_1 = CheckIni(a);$
- for $0 \le i < n$, $g_i \le_i g_{i+1}$;
- for 1 < i < n, if $g_{i-1} <_i g_i$: $g_{i+1} = Eval(g_i)$;
- for 0 < i < n, if $g_{i-1} \sim g_i$: $g_{i+1} = NewIniAnc(a, g_i)$;
- g_n contains either
 - the initial claim,

• or the negation of the initial claim, or $g_n = NewIniAnc(a, g_{n-1})$ and $g_{n-1} \sim g_n$.

3

<ロト < 同ト < ヨト < ヨト

Definition

Let F = (A, R, C) be an ADF. A grounded discussion game for credulous acceptance (denial) of $a \in A$ is a sequence $[g_0, \ldots, g_n]$:

- $g_0 = v_u;$
- $g_1 = CheckIni(a);$
- for $0 \le i < n$, $g_i \le_i g_{i+1}$;
- for 1 < i < n, if $g_{i-1} <_i g_i$: $g_{i+1} = Eval(g_i)$;
- for 0 < i < n, if $g_{i-1} \sim g_i$: $g_{i+1} = NewIniAnc(a, g_i)$;
- g_n contains either
 - the initial claim,
 - P wins the game
 - or the negation of the initial claim,
 - or $g_n = NewIniAnc(a, g_{n-1})$ and $g_{n-1} \sim g_n$.
 - O wins the game

3

<ロト < 同ト < ヨト < ヨト

Lemma

Let F be an ADF without any redundant link, that does not have any initial argument. Then $grd(F) = v_u$.

Lemma

Let F be an ADF without any redundant link, that does not have any initial argument. Then $grd(F) = v_u$.

Example

Let
$$F = (\{a, b\}, \{\varphi_a : b \lor \neg b, \varphi_b : b\})$$
. $grd(F) = \{a \mapsto \mathbf{t}, b \mapsto \mathbf{u}\}$.

Proposition

If $a \mapsto t/f \in grd(F)$, then either is an initial argument or has at least one initial ancestor.

イロト イポト イヨト イヨト 三日

Lemma

Let F be an ADF without any redundant link, that does not have any initial argument. Then $grd(F) = v_{u}$.

Example

Let
$$F = (\{a, b\}, \{\varphi_a : b \lor \neg b, \varphi_b : b\})$$
. $grd(F) = \{a \mapsto \mathbf{t}, b \mapsto \mathbf{u}\}$.

Proposition

If $a \mapsto t/f \in grd(F)$, then either is an initial argument or has at least one initial ancestor.

Example

Let
$$F = (\{a, b\}, \{\varphi_a : \neg a \land b, \varphi_b : \top\})$$
. $grd(F) = \{a \mapsto \mathbf{u}, b \mapsto \mathbf{t}\}$.

A.Keshavarzi, R.Verbrugge, B.Verheij (UG)

э

<ロト < 同ト < ヨト < ヨト

Completeness

Let F be a given ADF without any redundant links. If a is acceptable (deniable) in the grounded interpretation of F, then there is a grounded discussion game for the initial claim of accepting (denying) of a.

Soundness

Let F be a given ADF. If there is a grounded discussion game for an initial claim of P in which P wins, then grd(F) satisfies the initial claim of P.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary and Future Work

Summary

- We introduced the grounded discussion game.
- P tries to show that the initial claim can be in an extension of the trivial interpretation.
- O tries to challenge P.
- The method is sound and complete.
- The current method works locally over the ancestors of the argument in question.
- Even in the worst case, the method does not coincide with the least-fixed-point algorithm of grounded interpretation.

Future Work

- Does the method improve the reasoning system?
- Does the game work for infinite ADFs?

A.Keshavarzi, R.Verbrugge, B.Verheij (UG)

→ Ξ → → Ξ

< 1 →

References

Caminada, M. (2018).

Argumentation semantics as formal discussion.

In Baroni, P., Gabbay, D., Giacomin, M., and van der Torre, L., editors, <u>Handbook</u> of Formal Argumentation, pages 487–518.

Keshavarzi Zafarghandi, A., Verbrugge, R., and Verheij, B. (2019).

Discussion games for preferred semantics of abstract dialectical frameworks.

In Kern-Isberner, G. and Ognjanovic, Z., editors, <u>European Conference on Symbolic</u> and Quantitative Approaches with Uncertainty, pages 62–73. Springer, Berlin.

Polberg, S. (2017).

Developing the abstract dialectical framework.

PhD thesis, PhD thesis, TU Wien, Institute of Information Systems.

Vreeswijk, G. and Prakken, H. (2000).

Credulous and sceptical argument games for preferred semantics.

In Proceeding of the 7th European Workshop on Logic for Artificial Intelligence JELIA, volume 1919, pages 239–253. Springer.