# Expressiveness of SETAFs and Support-Free ADFs under 3-valued Semantics

W.Dvořák <sup>1</sup>, A.Keshavarzi Zafarghandi <sup>2</sup>, S.Woltran <sup>1</sup>

<sup>1</sup>Institute of Logic and Computation, TU Wien, Austria

<sup>2</sup>Bernoulli Institute, University of Groningen, The Netherlands

8th International Conference on Computational Models of Argument, COMMA 2020

Perugia, September, 2020

#### Introduction

- An Argumentation Framework (AF) is a pair F = (N, R), [Dung, 1995]:
  - N: set of arguments,
  - ▶  $R \subseteq N \times N$ : relation representing attacks between arguments.

# Example



- Semantics: Methods used to clarify the acceptance of arguments
- Extension: set of jointly accepted arguments



#### Introduction

- Set Argument Frameworks (SETAFs) [Nielsen and Parsons, 2007]
  - ► Collective attack
  - Do not consider support among arguments

# Example



- Abstract Dialectical Frameworks (ADFs) [Brewka and Woltran, 2010]
  - Unify several generalizations of AFs
  - Express relations between arguments beyond simple attack

## Example



## Motivation

#### Main Goal

Clarifying the expressiveness of SETAFs

- Two-valued signatures of SETAFs are more expressive than AFs [Dvořák et al., 2019]
- 3-valued labelling semantics of SETAFs are introduced in [Flouris and Bikakis, 2019]
- However, 3-valued signatures for SETAFs unexplored

#### Question

- Does the class of SETAFs embed in a subclass of ADFs, SFADFs?
- How is the characterization of SETAFs under 3-valued signatures?

#### Contribution

#### Main Contributions

- Introduce a subclass of ADFs
  - set abstract dialectical frameworks (SETADFs)
  - SETAFs and SETADFs coincide
- Comparing the expressiveness of SETADFs and SFADFs
- Characterising 3-valued signatures of SETAFs

## Outline

- Background
  - SETAFs
  - ADFs
- 2 Embeding SETAFs in ADFs, (SETADFs)
- Realizability and Expressivity
  - Relation between SETADFs and SFADFs
- 4 3-valued signature of SETAFs
- 5 Summary and Future work

#### **Definition**

A set argumentation framework (SETAF) is a pair (A, R) s.t.

- A is a finite set of arguments
- $R \subseteq (2^A \setminus \{\emptyset\}) \times A$  is the attack relation,  $(B, a) \in R$

# Example



# 3-valued labelling

• A 3-valued labelling:  $\lambda : A \mapsto \{\text{in}, \text{out}, \text{undec}\}$ 

#### Conflict-free

Labelling  $\lambda$  is conflict-free if

- $\forall (S, a) \in R$  either  $\lambda(a) \neq \text{in or } \exists b \in S \text{ with } \lambda(b) \neq \text{in,}$
- $\forall a \in A$ , if  $\lambda(a) = \text{out then } \exists (S, a) \in R \text{ s.t } \lambda(b) = \text{in for all } b \in S$

#### Semantics of SETAFs

Given a SETAF F = (A, R). Conflict-free labelling  $\lambda$  is

- $\lambda \in adm_{\mathcal{L}}$  if  $\forall a \in A$  if  $\lambda(a) = \text{in then } \forall (S, a) \in R \ \exists b \in S \text{ s.t.}$  $\lambda(b) = \text{out}$ ;
- $\lambda \in comp_{\mathcal{L}}$  if  $\forall a \in A$  (i)  $\lambda(a) = \inf \text{ iff } \forall (S, a) \in R \ \exists b \in S \text{ s.t}$   $\lambda(b) = \text{out}$ , (ii)  $\lambda(a) = \text{out}$  iff  $\exists (S, a) \in R \text{ s.t } \lambda(b) = \inf \forall b \in S$ ;
- $\lambda \in grd_{\mathcal{L}}$  if it is complete and  $\nexists \lambda'$  with  $\lambda'_{in} \subset \lambda_{in}$  complete in F;
- $\lambda \in pref_{\mathcal{L}}$  if it is complete and  $\nexists \lambda'$  with  $\lambda'_{in} \supset \lambda_{in}$  complete in F;
- $\lambda \in stb_{\mathcal{C}}$  if  $\lambda_{undec} = \emptyset$ .

#### **Definition**

An abstract dialectical framework (ADF) is a tuple F = (A, L, C) where

- A is a finite set of nodes (arguments, statements)
- $L \subseteq A \times A$  is a set of links
- $C = \{\varphi_a\}_{a \in A}$  is a collection of propositional formulas (acceptance conditions)

## Example



## 3-valued interpretation

• A three-valued interpretation:  $v : A \rightarrow \{\mathbf{t}, \mathbf{f}, \mathbf{u}\}.$ 

#### Semantics of ADFs

Given an ADF D. An interpretation v is

- $v \in adm(D)$  if  $v \leq_i \Gamma_D(v)$
- $v \in pref(D)$  if v is  $\leq_i$ -maximal admissible
- $v \in comp(D)$  if  $v = \Gamma_D(v)$
- v is grd(D) if v is the  $\leq_i$ -least fixed point of  $\Gamma_D(v)$
- $v \in mod(D)$  if v is a two-valued interpretation and  $v = \Gamma_D(v)$
- $v \in stb(D)$  if V is a model of D and  $v^t = w^t$ , in which w is the grounded interpretation of  $D^t = (v^t, L \cap (v^t \times v^t), \{\varphi_s[p/\bot : v(p) = f]\}_{s \in v^t})$
- $v \in cf(D)$  if for each  $s \in S$ ; v(s) = t implies  $\varphi_s^v$  is satisfiable and v(s) = f implies  $\varphi_s^v$  is unsatisfiable

# Embedding SETAFs in SETADFs

#### Definition

Given an ADF D = (S, L, C)

- support-free (SFADF): it contains only attacking links
- SETAF-like (SETADF):  $\forall s \in S$ :  $\varphi_s : \bigwedge_{cl \in \mathcal{C}} \bigvee_{a \in cl} \neg a$

#### Lemma



# **Embedding SETAFs in SETADFs**

#### Lemma



#### **Theorem**

Given a SETAF F and its associated SETADF D. For  $\sigma \in \{cf, adm, comp, pref, grd, stb\}$ ,  $\sigma_{\mathcal{L}}(F)$  and  $\sigma(D)$  are in one-to-one correspondence.



# Realizability and Expressiveness

# Definition [Dunne et al., 2015]

The signature of a formalism  ${\mathcal C}$  under a semantics  $\sigma$  is defined as

$$\Sigma_{\mathcal{C}}^{\sigma} = \{ \sigma(D) \mid D \in \mathcal{C} \}$$

#### Example

Given  $V = \{\{a \mapsto f, b \mapsto u, c \mapsto u\}, \{a \mapsto f, b \mapsto t, c \mapsto f\}, \{a \mapsto f, b \mapsto f, c \mapsto t\}\}.$ 

•  $\exists D \in ADFs \text{ s.t. } \mathbb{V} = comp(D)$ ?

# Realizability and Expressiveness

# Definition [Dunne et al., 2015]

The signature of a formalism  ${\mathcal C}$  under a semantics  $\sigma$  is defined as

$$\Sigma_{\mathcal{C}}^{\sigma} = \{ \sigma(D) \mid D \in \mathcal{C} \}$$

#### Example

Given  $V = \{\{a \mapsto \mathbf{f}, b \mapsto \mathbf{u}, c \mapsto \mathbf{u}\}, \{a \mapsto \mathbf{f}, b \mapsto \mathbf{t}, c \mapsto \mathbf{f}\}, \{a \mapsto \mathbf{f}, b \mapsto \mathbf{f}, c \mapsto \mathbf{t}\}\}.$ 

•  $\exists D \in ADFs$  s.t.  $\mathbb{V} = comp(D)$ ? Yes,  $\mathbb{V} \in \Sigma_{ADF}^{comp}$ 



•  $\exists D \in SETADFs \text{ s.t. } \mathbb{V} = comp(D)$ ?

# Realizability and Expressiveness

# Definition [Dunne et al., 2015]

The signature of a formalism  ${\mathcal C}$  under a semantics  $\sigma$  is defined as

$$\Sigma_{\mathcal{C}}^{\sigma} = \{ \sigma(D) \mid D \in \mathcal{C} \}$$

#### Example

Given  $V = \{\{a \mapsto \mathbf{f}, b \mapsto \mathbf{u}, c \mapsto \mathbf{u}\}, \{a \mapsto \mathbf{f}, b \mapsto \mathbf{t}, c \mapsto \mathbf{f}\}, \{a \mapsto \mathbf{f}, b \mapsto \mathbf{f}, c \mapsto \mathbf{t}\}\}.$ 

•  $\exists D \in ADFs$  s.t.  $\mathbb{V} = comp(D)$ ? Yes,  $\mathbb{V} \in \Sigma_{ADF}^{comp}$ 



- $\exists D \in SETADFs \text{ s.t. } \mathbb{V} = comp(D)$ ? No,  $\mathbb{V} \notin \Sigma_{SETADF}^{comp}$
- $\exists F \in SETAFs \text{ s.t. } \mathbb{V} = comp(F)$ ? No,  $\mathbb{V} \not\in \Sigma_{SFTAF}^{comp}$

# Example

Given  $D = (\{a, b, c\}, \{\varphi_a : \neg c, \varphi_b : \neg a \land (\neg a \lor \neg c), \varphi_c : \neg a\}).$ 

- D is a SETADF,
- $\bullet$  (c,b) is a redundant,
- D is not SFADF.

#### Lemma

For each SETADF D,  $\exists$  an equivalent SETADF D' that is also a SFADF.



for  $\sigma \in \{cf, adm, stb, mod, comp, pref, grd\}$ 

# Example

Given  $D = (\{a, b, c\}, \{\varphi_a : \neg c, \varphi_b : \neg a \land (\neg a \lor \neg c), \varphi_c : \neg a\}).$ 

- D is a SETADF,
- $\bullet$  (c, b) is a redundant,
- *D* is not SFADF.

#### Lemma

For each SETADF D,  $\exists$  an equivalent SETADF D' that is also a SFADF.



for  $\sigma \in \{\mathit{cf}, \mathit{adm}, \mathit{stb}, \mathit{mod}, \mathit{comp}, \mathit{pref}, \mathit{grd}\}$ 

#### Lemma

Given a SFADF D = (S, L, C). If  $s \in S$  has a incoming link, then  $\varphi_s$  is in CNF containing only negative literals.

#### Example

Given  $\mathbb{V} = \{ \{ a \mapsto \mathbf{t}, b \mapsto \mathbf{f} \} \}$ . For  $\sigma \in \{ stb, mod, comp, pref, grd \}$ 

•  $\mathbb{V} \in \Sigma^{\sigma}_{SFADF}$ ?

#### Lemma

Given a SFADF D = (S, L, C). If  $s \in S$  has a incoming link, then  $\varphi_s$  is in CNF containing only negative literals.

#### Example

Given  $\mathbb{V} = \{ \{ a \mapsto \mathbf{t}, b \mapsto \mathbf{f} \} \}$ . For  $\sigma \in \{ stb, mod, comp, pref, grd \}$ 

- $\mathbb{V} \in \Sigma_{SFADF}^{\sigma}$ ? Yes.  $D = (\{a, b\}, \{\varphi_a : \top, \varphi_b : \bot\})$
- $\mathbb{V} \in \Sigma_{SETADF}^{\sigma}$ ?

#### Lemma

Given a SFADF D = (S, L, C). If  $s \in S$  has a incoming link, then  $\varphi_s$  is in CNF containing only negative literals.

## Example

Given  $\mathbb{V} = \{ \{ a \mapsto \mathbf{t}, b \mapsto \mathbf{f} \} \}$ . For  $\sigma \in \{ stb, mod, comp, pref, grd \}$ 

- $\mathbb{V} \in \Sigma_{SFADF}^{\sigma}$ ? Yes.  $D = (\{a, b\}, \{\varphi_a : \top, \varphi_b : \bot\})$
- $\mathbb{V} \in \Sigma_{SETADF}^{\sigma}$ ? Yes.  $D = (\{a, b\}, \{\varphi_a : \top, \varphi_b : \neg a\})$



 $\Delta_{\sigma} = \{ \mathbb{V} \in \Sigma_{\mathsf{SFADF}}^{\sigma} \mid \exists v \in \mathbb{V} \; \mathsf{s.t.} \; \forall a : v(a) \in \{\mathbf{f}, \mathbf{u}\} \land \exists a : v(a) = \mathbf{f} \}$ 

#### **Theorem**

For  $\sigma \in \{\mathit{stb}, \mathit{mod}, \mathit{pref}\}$  and  $\mathbb{V} \in \Delta_{\sigma} \ (\Delta_{\sigma} = \Sigma_{\mathsf{SFADF}}^{\sigma} \setminus \Sigma_{\mathsf{SETADF}}^{\sigma})$ 

- $\bullet$   $|\mathbb{V}|=1$
- For  $\sigma \in \{stb, mod\}$ :  $v = v^f$

#### **Theorem**

For  $\sigma \in \{\mathit{stb}, \mathit{mod}, \mathit{pref}\}\ \mathsf{and}\ \mathbb{V} \in \Delta_\sigma\ (\Delta_\sigma = \Sigma_\mathsf{SFADF}^\sigma \setminus \Sigma_\mathsf{SETADF}^\sigma)$ 

- ullet  $|\mathbb{V}|=1$
- For  $\sigma \in \{stb, mod\}$ :  $v = v^f$

## Example

Given SFADF  $D = (\{a, b, c\}, \{\varphi_a = \bot, \varphi_b = \neg c, \varphi_c = \neg b\}).$ 

- $comp(D) = \{\{a \mapsto \mathbf{f}, b \mapsto \mathbf{u}, c \mapsto \mathbf{u}\}, \{a \mapsto \mathbf{f}, b \mapsto \mathbf{t}, c \mapsto \mathbf{f}\}, \{a \mapsto \mathbf{f}, b \mapsto \mathbf{f}, c \mapsto \mathbf{t}\}\},$
- D is not comp-realizable in SETADF
- Since  $comp(D) \subseteq adm(D) \subseteq cf(D)$ , D is not  $\sigma$ -realizable in SETADFs, for  $\sigma \in \{adm, cf\}$

# 3-valued Signatures of SETAFs

# Proposition

The signature  $\Sigma_{SETAF}^{pret_{\mathcal{L}}}$  is given by all non-empty sets  $\mathbb{L}$  of labellings s.t.

- $oldsymbol{0}$  all labellings  $\lambda \in \mathbb{L}$  have the same domain  $\mathit{Args}_{\mathbb{L}}$
- ② If  $\exists s \text{ s.t. } \lambda(s) = \text{out, then } \lambda_{\text{in}} \neq \emptyset$
- $\exists \ \forall \lambda_1, \lambda_2 \in \mathbb{L} \ \text{if} \ \lambda_1 \neq \lambda_2, \ \text{then} \ \exists a \ \text{s.t.} \ \lambda_1(a) = \text{in and} \ \lambda_2(a) = \text{out}$

## Proposition

The signature  $\Sigma_{SETAF}^{stb_{\mathcal{L}}}$  is given by all sets  $\mathbb L$  of labellings such that

- $oldsymbol{0} \ \mathbb{L} \in \Sigma_{\mathit{SETAF}}^{\mathit{pref}_{\mathcal{L}}}$
- $2 \ \lambda(s) \neq \text{undec for all } \lambda \in \mathbb{L}, \ s \in \textit{Args}_{\mathbb{L}}$

# Summary and Future Work

#### Summary

- Each SETAF F is associated with a SETADF D, vice versa
- ullet  $\Sigma_{SETAF}^{\sigma_{\mathcal{L}}} \equiv \Sigma_{SETADF}^{\sigma}$
- SFADFs are more expressive than SETADFs and SETAFs
- Characterise  $\Sigma_{SETAF}^{\sigma_{\mathcal{L}}}$ , for  $\sigma \in \{stb, pref, cf, grd\}$ , under 3-valued signatures
- Indicate differences of  $\Sigma_{SETAF}^{pref_{\mathcal{L}}}$  and  $\Sigma_{SETAF}^{stb_{\mathcal{L}}}$  via 3-valued setting

#### Future Work

- Exact characterization of  $\Sigma_{SETAF}^{\sigma_{\mathcal{L}}}$ , for  $\sigma \in \{adm, comp\}$
- Investigate whether the result improve the reasoning systems

#### References



Brewka, G. and Woltran, S. (2010).

Abstract dialectical frameworks.

In Proc. KR, pages 102-111.



Dung, P. M. (1995).

On the acceptability of arguments and its fundamental role in nonmonotonic reasoning, logic programming and n-person games.

Artif. Intell., 77(2):321–357.



Dunne, P. E., Dvořák, W., Linsbichler, T., and Woltran, S. (2015).

Characteristics of multiple viewpoints in abstract argumentation.

Artif. Intell., 228:153–178.



Dvořák, W., Fandinno, J., and Woltran, S. (2019).

On the expressive power of collective attacks.

Argument & Computation, 10(2):191-230.



Flouris, G. and Bikakis, A. (2019).

A comprehensive study of argumentation frameworks with sets of attacking arguments.

Int. J. Approx. Reason., 109:55-86.





A generalization of Dung's abstract framework for argumentation: Arguing with sets of attacking arguments.

In Maudet, N., Parsons, S., and Rahwan, I., editors, <u>Argumentation in Multi-Agent Systems</u>, pages 54–73, Berlin, Heidelberg. Springer Berlin Heidelberg.