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Argument1: Online classes have
many advantages. 

Argument2: Traditional learning still has    
many benefits to the students.

Determining relations between arguments requires 
knowledge beyond the text.

Machine
Learning 

Model



Argumentative Relation Classification

Support or 
Attack?

Background Knowledge: 

• What does tradition mean? 
• What is the relation between tradition and online? 
• How is online and learning related? 
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Background Knowledge: 
• Implicit Relational Knowledge: 
Online--> AtLocation-->Information-->RelatedTo-->Learning
Online--> Antonym--> Brick and Mortar--> Synonym--> 
traditional

• Definitional Knowledge: 
Tradition: a specific practice of long standing.
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• Common knowledge sources used are 
WordNet, ConceptNet, FrameNet, etc. 

• Identifying and extracting contextually relevant 
information from such a large knowledge base 
is a non-trivial task.

ConceptNet



Related Work
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• Frame- and Entity-Based Knowledge for Commonsense 
Argumentative Reasoning. 

✔ Enriching models with event and fact knowledge.
✔ Knowledge sources used are: FrameNet and WikiData.
✔ As an additional knowledge: Append pre-trained frame and entity embeddings 

with word vectors on the token-level. 

Botschen et al., 2015
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• Frame- and Entity-Based Knowledge for Commonsense 
Argumentative Reasoning.

✔ Enriching models with event and fact knowledge.
✔ Knowledge sources used are: FrameNet and WikiData.
✔ As an additional knowledge: Append pre-trained frame and entity embeddings 

with word vectors on the token-level. 

" In this work, we go beyond token-level knowledge and use relational 
knowledge. 

Botschen et al., 2015
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• Exploiting Background Knowledge for Argumentative Relation 
Classification.

✔ Extract knowledge paths from ConceptNet and DBpedia connecting 
argumentative units (AUs).

✔ Due to large number of paths: 
✔ Derive shallow quantitative features from knowledge paths (based on the 

relation types).

Kobbe et al., 2019
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• Exploiting Background Knowledge for Argumentative Relation 
Classification. 

✔ Extract knowledge paths from ConceptNet and DBpedia connecting 
argumentative units (AUs).

✔ Due to large number of paths: 
✔ Derive shallow quantitative features from knowledge paths (based on the 

relation types).

" In contrast to Kobbe et al., 2019 , we emphasize on selecting relevant 
knowledge. 

Kobbe et al., 2019
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Arg1: Landlords may want to 
earn as much as possible.

Arg2: Rent prices should be 
limited by a cap when there's a 
change of tenant.
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ConceptNet 5.6.0: [Speer and 
Havasi, 2012]

ConceptNet is a knowledge 
graph of semantic relation 
between concepts. 

Each edge represents one of 
37 types of semantic 
relationship. For e.g., UsedFor, 
FormOf, CapableOf, etc. 
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based method

List of paths

Personalised PageRank,
Closeness Centrality 
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Arg1: Landlords may want to 
earn as much as possible.

Arg2: Rent prices should be 
limited by a cap when there's a 
change of tenant.



Knowledge Graph Completion
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Arg1: Landlords may want to 
earn as much as possible.

Arg2: Rent prices should be 
limited by a cap when there's a 
change of tenant.

Becker M et al., 2019

“RelatedTo” changes to  different rela6ons

new relations

- Knowledge graphs are incomplete. 
- Apply relational classifier to predict 

ConceptNet relation types for given 
pairs of concepts. 



Lexical Knowledge

18

Arg1: Landlords may want to 
earn as much as possible.

Arg2: Rent prices should be 
limited by a cap when there's a 
change of tenant.

• We hypothesize that definitional 
knowledge about the entities in 
context should help the model.

• We use WordNet to extract 
definitional knowledge.    

“WordNet”
Landlord: a landowner who leases to 
others.

Tenant: someone who pays rent to use land
or a building or a car that is owned by 
someone else.
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Encoding layer

w1a2,w2a2,w3a2::::,wma2w1a1,w2a1,w3a1::::,wna1



26

Task Setup
-Dataset: Student Essay, Debatepedia

- Task: Argumentation Relation Classification

- Knowledge Sources: 
-Commonsense Knowledge: ConceptNet 5.6.0
- Lexical Knowledge: WordNet 
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Baseline Results

CN = ConceptNet
WN = WordNet
CWN = ConceptNet + 
WordNet
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Results
Our model

CN = ConceptNet
WN = WordNet
CWN = ConceptNet + 
WordNet

Baseline



Ablation Study
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CN = ConceptNet
WN = WordNet
CWN = ConceptNet + 
WordNet



Analysis
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- We manually divided the data into 
15 topics. 

- Analysed the performance of ARK 
vs Bi-LSTM + Attention. 

- Knowledge improves the 
performance across many topics.

- Topics like Gay Rights, Regional 
Politics injecting knowledge didn’t 
help. 



• In this work,
• We present our graph-based method that extracts relevant 

commonsense knowledge.

• We show selectively integrating it into the model improves over a 
strong neural and a linear ARC system on two datasets.

• We show that extending the knowledge ‘on the fly’ can further improve
results. 

Debatepedia data link: https://madata.bib.uni-mannheim.de/324/
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Conclusion

https://madata.bib.uni-mannheim.de/324/
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Thank you for listening!

Questions?

paul@cl.uni-heidelberg.de
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