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Argumentative Relation Classification

Support or Attack?

Argumentt: Online classes have Argument2: Traditional learning still has
many advantages. many benefits to the students.
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Argumentative Relation Classification

Determining relations between arguments requires
knowledge beyond the text.
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Argumentative Relation Classification

Background Knowledge:

Support or
Attack?

What does tradition mean?
What is the relation between tradition and online?
* How is online and learning related?
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Background Knowledge

- Common knowledge sources used are " O f
WordNet, ConceptNet, FrameNet, etc. WURDNET' B /1 A
o a4
o\ /> O
* |dentifying and extracting contextually relevant / ConceptNet

information from such a large knowledge base
IS a non-trivial task.




Related Work

* Frame- and Entity-Based Knowledge for Commonsense
Argumentative Reasoning.

v/ Enriching models with event and fact knowledge.

v/ Knowledge sources used are: FrameNet and WikiData.

v/ As an additional knowledge: Append pre-trained frame and entity embeddings
with word vectors on the token-level.

Companies can't be trusted.

embeddings for words: ] B B N
frames: ] I
entities: []

reading in with bi-LSTM Botschen et al., 2015
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Related Work

* Frame- and Entity-Based Knowledge for Commonsense
Argumentative Reasoning.

v/ Enriching models with event and fact knowledge.

v/ Knowledge sources used are: FrameNet and WikiData.

v/ As an additional knowledge: Append pre-trained frame and entity embeddings
with word vectors on the token-level.

. In this work, we go beyond token-level knowledge and use relational
knowledge.

Botschen et al., 2015



Related Work

Exploiting Background Knowledge for Argumentative Relation
Classification.

Vv Extract knowledge paths from ConceptNet and DBpedia connecting
argumentative units (AUs).
v/ Due to large number of paths:
V/ Derive shallow quantitative features from knowledge paths (based on the
relation types).

Kobbe et al., 2019



Related Work

Exploiting Background Knowledge for Argumentative Relation
Classification.

Vv Extract knowledge paths from ConceptNet and DBpedia connecting
argumentative units (AUs).
v/ Due to large number of paths:
V/ Derive shallow quantitative features from knowledge paths (based on the
relation types).

. In contrast to Kobbe et al., 2019, we emphasize on selecting relevant
knowledge.

Kobbe et al., 2019



Commonsense Knowledge Extraction

Arg1: Landlords may want to
earn as much as possible.

Arg2: Rent prices should be
limited by a cap when there's a
change of tenant.
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Commonsense Knowledge Extraction

GRS ConceptNet 5.6.0: [Speer and

has ~ common sense
knowledge graph ——@

Arg1: Landlords may want to R oy Havasi, 2012]

earn as much as possible. ConceptNet is a knowledge
— graph of semantic relation

Arg2: Rent prices should be i between concepts.

limited by a cap when there's a

change of tenant. Each edge represents one of
T - 37 types of semantic
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Commonsense Knowledge Extraction

pay to stay
tenant to

pay rent

related to

Arg1: Landlords may want to
earn as much as possible.

let room
to tenant

Arg2: Rent prices should be
limited by a cap when there's a
change of tenant.
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Commonsense Knowledge Extraction

pay to stay

tenant to
related to pay rent

Arg1: Landlords may want to
earn as much as possible.

let room
to tenant

Arg2: Rent prices should be

limited by a cap when there's a

P {s':e overspend
change of tenant.
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Knowledge Graph Completion

pay to stay

Arg1: Landlords may want to
earn as much as possible.

Arg2: Rent prices should be
limited by a cap when there's a
change of tenant.

— Knowledge graphs are incomplete.

— Apply relational classifier to predict
ConceptNet relation types for given
pairs of concepts.

tenant to
pay rent

AtLocation
related-to

Hasa

let room
to tenant

HasProperty

much
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“RelatedTo” changes to different relations

new relations

Becker M et al., 2019
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Lexical Knowledge

Arg1: Landlords may want to
earn as much as possible.

Arg2: Rent prices should be
limited by a cap when there's a
change of tenant.

* We hypothesize that definitional
knowledge about the entities In
context should help the model.

* We use WordNet to extract
definitional knowledge.

“WordNet”
Landlord: a landowner who leases to
others.

Tenant: someone who pays rent to use land

or a building or a car that is owned by
someone else.
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Task Setup

— Dataset: Student Essay, Debatepedia
— Task: Argumentation Relation Classification

— Knowledge Sources:
— Commonsense Knowledge: ConceptNet 5.6.0
— Lexical Knowledge: WordNet
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Ablation Study
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Analysis

— We manually divided the data into
15 topics.

— Analysed the performance of ARK
vs Bi-LSTM + Attention.

— Knowledge improves the
performance across many topics.

— Topics like Gay Rights, Regional
Politics injecting knowledge didn't
help.
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Conclusion

 |n this work,

» We present our graph-based method that extracts relevant
commonsense knowledge.

* We show selectively integrating it into the model improves over a
strong neural and a linear ARC system on two datasets.

* We show that extending the knowledge ‘on the fly’ can further improve
results.

Debatepedia data link: hitps://madata.bib.uni-mannheim.de/324/



https://madata.bib.uni-mannheim.de/324/
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